m01 — Sorting mO01ldsc

nag rank sort (m0ldsc)

1. Purpose

nag_rank sort (m0ldsc) ranks a vector of arbitrary data type objects in ascending or descending
order.

2. Specification

#include <nag.h>
#include <nag_stddef.h>
#include <nagmO1.h>

void nag_rank_sort(Pointer vec[], size_t n, ptrdiff_t stride,
Integer (*compare) (const Pointer, const Pointer), Nag_SortOrder order,
size_t ranks[], NagError *fail)

3. Description

nag-rank_sort ranks a set of n data objects of arbitrary type, which are stored in the elements of
an array at intervals of length stride. The ranks are in the range 0 to n — 1.

Either ascending or descending ranking order may be specified.

nag-rank_sort uses a variant of list merging as described by Knuth (1973).

4. Parameters

vec| |
Input: the array of objects to be ranked.

Input: the number n of objects.
Constraint: n > 0.

stride
Input: the increment between data items in vec to be ranked.
Note: if stride is positive, vec should point at the first data object; otherwise vec should point
at the last data object.
It should be noted that |stride| must be greater than or equal to size-of (data objects), for
correct ranks to be produced. However, the code performs no check for violation of this
constraint.
Constraint: |stride| > 0.

compare
User-supplied function: this function compares two data objects. If its arguments are pointers
to a structure, this function must allow for the offset of the data field in the structure (if it
is not the first).
The function must return:
—1 if the first data field is less than the second,
0 if the first data field is equal to the second,
1 if the first data field is greater than the second.

order
Input: specifies whether the array is to be ranked into ascending or descending order.
Constraint: order = Nag_Ascending or Nag_Descending.

ranks|n]
Output: the ranks of the corresponding data elements in vec.

fail
The NAG error parameter, see the Essential Introduction to the NAG C Library.

[NP3275/5/pdf] 3.m01dsc. 1

nag_rank_sort NAG C Library Manual

6.1.

8.1.

Error Indications and Warnings

NE_INT_ARG._LT
On entry, n must not be less than 0: n = (value).

NE_INT_ARG_GT
On entry, n must not be greater than (value): n = (value).
On entry, |stride| must not be greater than (value): stride = (value).

These parameters are limited to an implementation-dependent size which is printed in the
€rror message.

NE_INT_ARG_EQ
On entry, stride must not be equal to 0: stride = (value).

NE_BAD PARAM
On entry, parameter order had an illegal value.

Further Comments
The time taken by the function is approximately proportional to nlogn.
References

Knuth D E (1973) The Art of Computer Programming (Vol 3, Sorting and Searching) Addison-
Wesley.

See Also

None.

Example
The example program reads a list of real numbers and ranks them into ascending order.

Program Text

/* nag_rank_sort(mOldsc) Example Program
*

* Copyright 1990 Numerical Algorithms Group.
*

* Mark 4, 1996.

*/

#include <nag.h>
#include <stdio.h>
#include <nag_stdlib.h>
#include <nag_stddef.h>
#include <nagmO1.h>

#define N_MAX 50

#ifdef NAG_PROTO
static Integer compare(const Pointer a, const Pointer b)
#else

static Integer compare(a, b)

Pointer a, b;

#endif
{
double x = *((double *)a);
double y = *((double *)b);
return (x<y 7 -1 : (x==y 7 0 : 1));
}
main()
{

double vec[N_MAX];
ptrdiff_t step;

3.m01dsc.2 [NP3275/5/pdf]

m01 — Sorting mO01ldsc

size_t i, n, rank[N_MAX];
static NagError fail;

fail.print = TRUE;
/* Skip heading in data file */
Vscanf ("%*["\n]");
Vprintf ("mOldsc Example Program Results\n\n");
Vscanf ("%1d%1d", &n, &step);
if (n>=0 &% step!=0)
{
for (i=0; i<n; ++i)
Vscanf ("%1f", &veclil);
mOldsc((Pointer) vec, n, stepx(ptrdiff_t) (sizeof (double)), compare,
Nag_Ascending, rank, &fail);
if (fail.code != NE_NOERROR)
exit (EXIT_FAILURE);
Vprintf (" Data Rank\n");
for (i=0; i<n; ++i)
Vprintf (" %7.4f %4d\n", vecl[i], rank[i]);
exit (EXIT_SUCCESS);

Viprintf (stderr, "Data error: program terminated.\n");
exit (EXIT_FAILURE);
}
}

8.2. Program Data

mOldsc Example Program Data

12

1
5.34.67.81.75.39.93.24.37.84.51.27.6

8.3. Program Results

mOldsc Example Program Results

Data Rank
.3000
.6000
.8000
.7000
.3000
.9000
.2000
.3000
.8000
.5000
.2000
.6000

e

[
VO OWNRFRL,L NP, OO

N, A NAWOO R NSO

[NP3275/5/pdf] 3.m01dsc.3

